Cysteine Mutagenesis and Computer Modeling of the S6 Region of an Intermediate Conductance IKCa Channel

نویسندگان

  • Manuel Simoes
  • Line Garneau
  • Hélène Klein
  • Umberto Banderali
  • Fadi Hobeila
  • Benoit Roux
  • Lucie Parent
  • Rémy Sauvé
چکیده

Cysteine-scanning mutagenesis (SCAM) and computer-based modeling were used to investigate key structural features of the S6 transmembrane segment of the calcium-activated K(+) channel of intermediate conductance IKCa. Our SCAM results show that the interaction of [2-(trimethylammonium)ethyl] methanethiosulfonate bromide (MTSET) with cysteines engineered at positions 275, 278, and 282 leads to current inhibition. This effect was state dependent as MTSET appeared less effective at inhibiting IKCa in the closed (zero Ca(2+) conditions) than open state configuration. Our results also indicate that the last four residues in S6, from A283 to A286, are entirely exposed to water in open IKCa channels, whereas MTSET can still reach the 283C and 286C residues with IKCa maintained in a closed state configuration. Notably, the internal application of MTSET or sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES) caused a strong Ca(2+)-dependent stimulation of the A283C, V285C, and A286C currents. However, in contrast to the wild-type IKCa, the MTSET-stimulated A283C and A286C currents appeared to be TEA insensitive, indicating that the MTSET binding at positions 283 and 286 impaired the access of TEA to the channel pore. Three-dimensional structural data were next generated through homology modeling using the KcsA structure as template. In accordance with the SCAM results, the three-dimensional models predict that the V275, T278, and V282 residues should be lining the channel pore. However, the pore dimensions derived for the A283-A286 region cannot account for the MTSET effect on the closed A283C and A286 mutants. Our results suggest that the S6 domain extending from V275 to V282 possesses features corresponding to the inner cavity region of KcsA, and that the COOH terminus end of S6, from A283 to A286, is more flexible than predicted on the basis of the closed KcsA crystallographic structure alone. According to this model, closure by the gate should occur at a point located between the T278 and V282 residues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Insights on the Voltage Dependence of the K Ca 3 . 1 Channel Block by Internal

We present in this work a structural model of the open IKCa (K Ca 3.1) channel derived by homology modeling from the MthK channel structure, and used this model to compute the transmembrane potential profile along the channel pore. This analysis showed that the selectivity filter and the region extending from the channel inner cavity to the internal medium should respectively account for 81% an...

متن کامل

hERG Gating Microdomains Defined by S6 Mutagenesis and Molecular Modeling

Human ether-à-go-go-related gene (hERG) channels mediate cardiac repolarization and bind drugs that can cause acquired long QT syndrome and life-threatening arrhythmias. Drugs bind in the vestibule formed by the S6 transmembrane domain, which also contains the activation gate that traps drugs in the vestibule and contributes to their efficacy of block. Although drug-binding residues have been i...

متن کامل

Intermediate-conductance Ca -activated K channel is expressed in C2C12 myoblasts and is downregulated during myogenesis

Fioretti, Bernard, Tiziana Pietrangelo, Luigi Catacuzzeno, and Fabio Franciolini. Intermediate-conductance Ca -activated K channel is expressed in C2C12 myoblasts and is downregulated during myogenesis. Am J Physiol Cell Physiol 289: C89–C96, 2005. First published March 2, 2005; doi:10.1152/ajpcell.00369.2004.—We report here the expression in C2C12 myoblasts of the intermediateconductance Ca -a...

متن کامل

Characterization of the PCMBS-dependent modification of KCa3.1 channel gating

Intermediate conductance, calcium-activated potassium channels are gated by the binding of intracellular Ca(2+) to calmodulin, a Ca(2+)-binding protein that is constitutively associated with the C terminus of the channel. Although previous studies indicated that the pore-lining residues along the C-terminal portion of S6 contribute to the activation mechanism, little is known about whether the ...

متن کامل

A molecular study on the endoplasmic reticulum potassium channels in hepatocytes

Introduction: It has recently been suggested that the KATP channel subunits Kir6.x and BKCa channels exist in the endoplasmic reticulum of cardiomyocytes and neurons. Our previous studies showed the electrophysiological behavior of cation channels in the rough endoplasmic reticulum (RER) of rat hepatocytes. Therefore, we hypothesized that KATP channels and Ca2+-activated potassium channels m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 120  شماره 

صفحات  -

تاریخ انتشار 2002